
IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5657 268

A Brief Study of Graph Data Structure

Jayesh Kudase
1
, Priyanka Bane

2

B.E. Student, Dept of Computer Engineering, Fr. Conceicao Rodrigues College of Engineering, Maharashtra, India1, 2

Abstract: Graphs are a fundamental data structure in the world of programming. Graphs are used as a mean to store

and analyse metadata. A graph implementation needs understanding of some of the common basic fundamentals of

graph. This paper provides a brief study of graph data structure. Various representations of graph and its traversal

techniques are discussed in the paper. An overview to the advantages, disadvantages and applications of the graphs is

also provided.

Keywords: Graph, Vertices, Edges, Directed, Undirected, Adjacency, Complexity.

I. INTRODUCTION

Graph is a data structure that consists of finite set of

vertices, together with a set of unordered pairs of these

vertices for an undirected graph or a set of ordered pairs

for a directed graph. These pairs are known as

edges/lines/arcs for undirected graphs and directed edge /

directed arc / directed line for directed graphs. An edge

can be associated with some edge value such as a numeric
attribute. These attribute will be based on cost or length or

capacity. We can represent the vertices externally also

with the help of integer indices or references.

Graphs are very important in the field of computer

science. They are used to model real world systems such

as Internet where each node represents a router and each

edge represents a connection between the routers. The

wireframe drawings in computer graphics are another

example of graphs.

II. BACKGROUND

A. What is a Graph?

Graph is a pictorial representation of a set of objects,

where the object pairs are connected by links. The

interconnected objects are called as vertices or nodes of a

graph whereas the links connecting these vertices are

known as edges.

It is an ordered pair of sets (V, E) where V= set of vertices

and E = set of edge joining the vertices pairs. E is a subset

of V x V. Simply speaking, each edge connects two

vertices, including a case, when a vertex is connected to
itself (such an edge is called a loop). Graph structure is

shown in Fig. 1.

Fig.1 Graph Structure

From the graph shown in Fig. 1, we can write that

V = {a, b, c, d, e}

E = {ab, ac, bd, cd, de}

Adjacency relation: Node B is adjacent to A if there is an

edge from A to B.

Paths and reachability: A path from A to B is a sequence

of vertices A1… A such that there is an edge from A to
A1, from A1 to A2… from An to B. Vertex B is said to be

reachable from A if there is a path from A to B.

B. Graph Operations

The basic primary operations provided by a graph data

structure are as follows:

 Addition of a vertex: adding a vertex to a graph when

needed.

 Removal of a vertex: removing an existing vertex from

the graph.

 Get vertex value: returns the value linked with a
particular vertex.

 Set vertex value: assigns the value for a particular

vertex.

 Addition of an edge: adding an edge between two

vertices of a graph.

 Removal of an edge: removing an edge that exists

between two vertices as required.

 Get edge value: returns the value linked with the edge

joining any two vertices.

 Set edge value: assigns the value to an edge connecting

the given vertices.

 Displaying a vertex: display required vertex of a graph.

 Finding all the neighboring vertices Y such that there

exists an edge from the vertex X to vertex Y.

 Testing whether vertex X is adjacent to vertex Y which

means confirming the existence of an edge from X to

Y.

 Counting the number of vertices and number of edges

present in the given graph.

C. Types of Graphs

1) Directed Graph: A directed graph is a graph where all
the edges are directed from one vertex to another. The

order of vertices in the pairs in the edge set matters in this

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5657 269

type of graph. Thus, a is adjacent to b only if the edge set

consists of a pair (a, b). In directed graph edges are drawn

as arrows indicating the direction. A directed graph is

sometimes called a digraph or a directed network. Directed

graph can be cyclic or acyclic. Cycle is a path along the

directed edges from a vertex to itself. Example of directed

graph is shown in the Fig. 2.

Fig. 2 Directed graph

2) Undirected Graph: A directed graph is a graph where all

the edges are bidirectional. The order of vertices in the

pairs in the edge set doesn‟t matter in this type of graph. In
undirected graph edges are drawn as straight lines.

Example of undirected graph is shown in the Fig. 3.

Fig. 3Undirected graph

3) Weighted Graph: A weighted graph is a graph where

each edge has an associated numerical value, called

weight. Weighted graphs may be either directed or

undirected. The weight of the edge is often referred to as

the “cost” of the edge. Example of weighted graph is

shown in the Fig. 4.

Fig. 4 Weighted graph

4) Space Graphs and Dense Graphs: Consider a graph

having n nodes. A graph is said to be a sparse graph if it

has less than n2 edges. For example, a graph with n nodes

and n edges or even 2n edges is said to be sparse.

Whereas, a graph with close to maximum number of edges
is said to be dense.

III. GRAPH REPRESENTATION

Graph is a mathematical structure and finds its

applications in various Computer fields. The graph

problems should be represented in computer memory

using suitable data structures. The choice of graph

representation is said to be situation specific. It totally

depends on the type of operations to be performed and

ease of use. Simple way to represent a graph is using Edge

List.

A. Edge List: This structure simply maintains and stores

the vertices and the edges into unsorted sequences.

Advantage: Easy to implement and iterate over small

edges.

Disadvantage: Finding the edges incident on a given

vertex is inefficient since it requires examining the entire

edge sequence. That means –

 Difficult to tell how many edges a vertex touches.

 Difficult to tell if an edge exists say from A to B.

Further, Adjacency list and Adjacency matrix are the two

standard and widely used ways for the representation of a

graph.

B. Adjacency List: This list structure extends the edge list
structure by adding incidence containers to each vertex.

Here an array of linked lists is used. Array size will be

equal to the number of vertices. Consider an array A[]. An

entry A[i] represents the linked list of vertices adjacent to

the ith vertex. In these, vertices are stored as objects. Each

vertex further contains a list of neighboring vertices. This

type of representation allows additional data of the

vertices to be stored. But these additional data is stored

only if edges are stored as objects that mean every vertex

store its incident edges and edge stores its incident

vertices.
Another representation could be maintaining two lists.

First list stores indices corresponding to each vertex in the

graph and each of these refer to the second list storing the

index of each adjacent vertex to this one. It would be good

if we associate weight of each edge with the adjacent

vertex in this list. These lists of all the vertices in the graph

would be useful if stored in a hash table.

It is also used to represent a weighted graph. The nodes of

linked lists will be storing weights of edges. Each node has

precisely as many nodes in its adjacency list as it has

neighbors. Therefore, an adjacency list is a very space

efficient representation of a graph. You would not store
more information than actually required.

If a graph has V vertices and E edges then a graph

represented using adjacency list will need –

• V+E node instances for a directed graph

• V+2E node instances for an undirected graph

This is generally recommended if it efficiently represent

sparse graphs.

Advantages of using adjacency list are as follows:

 Addition of a vertex and connecting new vertices with

the existing ones is easier.

 Has a space complexity of O(|V|+|E|).

 It allows us to store graph in more compact form and to

get the list of adjacent vertices in O(1) time which is a

big benefit for some algorithms.

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5657 270

Disadvantages of using adjacency list are as follows:

 Queries like whether there is an edge from vertex u to

vertex v are not efficient and require time complexity,

O(V).

 It does not allow us to make an efficient

implementation, if dynamic change of vertices number

is required.

Example of adjacency list representation is as shown in

Fig. 5.

Fig5 Adjacency List Representation of a given graph

C. Adjacency Matrix: The adjacency matrix structure

augments the edge list structure with a matrix where each

row and column corresponds to a vertex. It is a two

dimensional matrix form where the rows represent source

vertices and columns represent destination vertices. Data

on edges and vertices is stored externally. Between each

pair of vertices, cost of one edge is to be stored. This

shows which vertices are adjacent to one another. We

know that two vertices are said to be adjacent if there is an

edge connecting them. For a graph of n vertices, the
dimensions of adjacency matrix will be n*n.

In case of directed graph, suppose if vertex j is adjacent to
vertex i then there will be an edge from i to j and vice-

versa. For a given vertex i, its adjacent vertices will be

determined by looking at the row entry (i, [1…n]) of the

matrix. If the value is true then it indicates that there exists

an edge from i to j and false indicates no edge exists.

In case of undirected graph, the matrix values will be

populated with Boolean values. The values of (i, j) and (j,

i) are equal which means adjacency matrix for undirected

graph is always symmetric along the diagonal.

In weighted graph, the Boolean values will be the costs of

the edges connecting two vertices of a graph. Generally

adjacency matrix is used to represent weighted graphs. If

adj[i][j] = w , then we will say that there is an edge from

vertex i to vertex j with weight w (can be any positive
number). There are some cases where zero can also be the

possible weight of the edge, then we have to store some

sentinel value for non-existent edge, which can be a

negative value; since the weight of the edge is always a

positive number.

An adjacency matrix requires an n2 element array so for

parse graphs much of the matrix will be empty. Also, for

undirected graphs half of the graph is repeated

information. Hence these matrices are said to be space

inefficient.

The memory use of an adjacency matrix is O(n2) where n

= number of vertices.

Advantages of using adjacency matrix are as follows:

 Easy to understand, implement and convenient to work

with.

 Removing an edge involves time complexity of O(1).

 Queries like whether there is an edge from vertex „u‟ to

vertex „v‟ are efficient and require time complexity,

O(1).

Disadvantages of using adjacency matrix are as follows:

 Space complexity is of the O(V2) where V = number of
vertices.

 Sparse matrix has less number of edges but the space

complexity is still the same.

 Adding an edge involves time complexity of O(V2).

 If the number of nodes in the graph may change, matrix

representation is too inflexible (especially if we don‟t

know the maximal size of the graph).

This is preferred if the graph is of dense type where |E| ~

V2.

Example of adjacency matrix representation is as shown in
Fig. 6.

Fig. 6. Adjacency Matrix Representation of a given Graph

We can say that Although the linked list representation

requires very less memory as compared to the adjacency
matrix, the simplicity of adjacency matrix makes it

preferable when graph are reasonably small.

Adjacency information in an array can be viewed as a

function.

1) Merits of representing graphs as functions are as
follows:

 Simple and easy to understand.

 Easily adaptable to different types of graphs.

2) Demerits of representing graphs as functions are as

follows:

 Graph must be known statistically at compile time.

 Cannot be extended to accommodate queries about the

set of Vertices or the set of Edges.

One way to overcome the cons of using functions to

represent graph is to use arrays instead.

1) Merits of representing graphs as arrays are as follows:

 Simple and easy to understand and easily adaptable to

different types of graphs.

 Can be accessed efficiently and constructed at run-
time.

2) Demerits of representing graphs as arrays are as

follows:

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5657 271

 The domain of Vertices must be a type that can be used

as an index into an array.

 Requires that graph access be a Command rather than a

computation

IV. GRAPH TRAVERSAL TECHNIQUES

Graph traversal means visiting all the nodes of the graph.

A structured system is required by many application of

graph to examine the vertices and edges of a graph. There

are two graph traversal methods as follows:
1. Breadth First Search (BFS)

2. Depth First Search (DFS)

Breadth First Search:

Given an input graph G = (V, E) and a source vertex S,

from where the searching starts. We mark the vertex S as

visited and then visit all of its adjacent nodes. Now one of

the adjacent node is selected for exploration. The

procedure is repeated until all the nodes are visited. Thus,

BFS systematically traverse the edges of G to explore

every vertex that is reachable from S. A queue is used to
keep a track of the progress of traversing the neighbour

nodes. Implementation of BFS is as shown in the Fig. 7.

Fig.7 Implementation of BFS

Algorithm:

1. Input the vertices of the graph and its edges G = (V, E)

2. Input the source vertex and assign it to the variable S.

3. Add or push the source vertex to the queue.

4. Repeat the steps 5 and 6 until the queue is empty (i.e.,

front > rear)
5. Pop the front element of the queue and mark it as

visited.

6. Push the vertices, which is neighbor to just popped

element, if it is not in the queue and is not visited.

Depth First Search:

Given an input graph G = (V, E) and a source vertex S,

from where the searching starts. We mark the vertex S as

visited and then visit one of its adjacent nodes. We will

mark this adjacent node as visited. The procedure is

repeated until all the vertices of the graph are visited

recursively. A stack is used in the implementation of DFS.

Implementation of DFS is as shown in the Fig. 8.

Fig. 8 Implementation of DFS

Algorithm:

1. Input the vertices and edges of the graph G = (V, E).

2. Input the source vertex and assign it to the variable S.

3. Push the source vertex to the stack.

4. Repeat the steps 5 and 6 until the stack is empty.

5. Pop the top element of the stack and mark it is visited.

6. Push the vertices which is neighbour to just popped

element, if it is not in the stack and is not visited.

7. Exit.

V. APPLICATIONS OF GRAPHS

 In road networks, we can consider the intersections as

vertices and the road segments between them as the

edges. Many map programs such as Google maps, Bing

maps and Apple IOS 6 maps makes use of such

networks to find the best routes between locations.

They are used for studying traffic patterns, traffic light

timings and many aspects of transportation.

 Directed graph can be used to map the links between

pages within a website. In this case each web page is a

vertex and each hyperlink is a directed edge. These
graphs are also used to analyse ease of navigation

between different parts of the site.

 In case of power grid and water network, vertices

represent connection points and edges represent the

wires or pipes between them. Graphs can be used to

minimize the cost to build this infrastructure that

matches the required demands.

 Scene graphs represent the logical or spatial

relationships between objects in a scene. Scene graphs

are widely used in graphics and computer games

industry.

 Graph theory is also widely used in sociology as a way,

for example, to measure actors' prestige or to explore

rumour spreading, notably through the use of social

network analysis software.

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5657 272

 A common problem in AI is to find some goal that

satisfies a list of constraints. For example, for a

University to set its course schedules, it needs to make

sure that certain courses don't conflict, that a professor

isn't teaching two courses at the same time, that the

lectures occur during certain timeslots, and so on.

Constraint satisfaction problems like this are often

modelled and solved using graphs.

VI. CONCLUSION

Graphs are a commonly used data structure because they

can be used to model many real-world problems. The

graph makes large data quite simpler to work with. Graphs

are a very effective visual tool because they have the

capacity to present the information quickly as well as

easily. Graphs have the ability to reveal a trend or

comparison. That is the main reason why the graphs are

commonly used by different media and also in business.

Thus various representations of a graph, advantages and

disadvantages and their applications have been studied.

REFERENCES

[1] Danny Sleator, “Parallel and Sequential Data Structures and

Algorithms,15-210 (fall 2013) ”, Sept. 24 , 2013.

[2] Nykamp DQ, “Undirected graph definition” on Math Insight.

Available: http://mathinsight.org/definition/undirected_graph

[3] MSDN contributors, Available: https://msdn.microsoft.com/en-

us/library/aa289152(v=vs.71).aspx

[4] Wikipedia contributors, Available: https://en.m.wikipedia.org/

wiki/Graph_(abstract_data_type)

[5] Wiki books contributors, Available: https://en.m.wikibooks.org/

wiki/Data_Structures/Graphs

[6] Tutorials point contributors, Available: http://www.tutorialspoint

.com/data_structures_algorithms/graph_data_structure.htm

[7] Graphs in computer science, Available: http://web.cecs.pdx.edu

/~sheard/course/Cs163/Doc/Graphs.html

[8] Slideshare contributors, Available: http://www.slideshare.net/

AbhishekPachisia/matrix-representation-ofgraph?next_slideshow=1

[9] Stackoverflow contributors, Available: http://stackoverflow.com/

questions/703999/what-are-good-examples-of-problems-that

graphs-can-solve-better-than-the-alterna

[10] Ds lecture notes on Graph, Available: http://www.ggu.ac.in/

download/Class-Note13/ds%20lecture%20notes%20graph12.11.

13.pdf.

http://mathinsight.org/definition/undirected_graph
https://msdn.microsoft.com/en-us/library/aa289152(v=vs.71).aspx
https://msdn.microsoft.com/en-us/library/aa289152(v=vs.71).aspx
https://en.m.wikibooks.org/wiki/Data_Structures/Graphs
https://en.m.wikibooks.org/wiki/Data_Structures/Graphs

