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Abstract: Graphs are a fundamental data structure in the world of programming. Graphs are used as a mean to store 

and analyse metadata. A graph implementation needs understanding of some of the common basic fundamentals of 

graph. This paper provides a brief study of graph data structure. Various representations of graph and its traversal 

techniques are discussed in the paper. An overview to the advantages, disadvantages and applications of the graphs is 

also provided. 
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I. INTRODUCTION 

 

Graph is a data structure that consists of finite set of 

vertices, together with a set of unordered pairs of these 

vertices for an undirected graph or a set of ordered pairs 

for a directed graph. These pairs are known as 

edges/lines/arcs for undirected graphs and directed edge / 

directed arc / directed line for directed graphs. An edge 

can be associated with some edge value such as a numeric 
attribute. These attribute will be based on cost or length or 

capacity. We can represent the vertices externally also 

with the help of integer indices or references. 

 

Graphs are very important in the field of computer 

science. They are used to model real world systems such 

as Internet where each node represents a router and each 

edge represents a connection between the routers. The 

wireframe drawings in computer graphics are another 

example of graphs. 

 

II. BACKGROUND 
 

A. What is a Graph? 

Graph is a pictorial representation of a set of objects, 

where the object pairs are connected by links. The 

interconnected objects are called as vertices or nodes of a 

graph whereas the links connecting these vertices are 

known as edges. 

It is an ordered pair of sets (V, E) where V= set of vertices 

and E = set of edge joining the vertices pairs. E is a subset 

of V x V. Simply speaking, each edge connects two 

vertices, including a case, when a vertex is connected to 
itself (such an edge is called a loop). Graph structure is 

shown in Fig. 1. 

 

 
Fig.1 Graph Structure 

 

 

From the graph shown in Fig. 1, we can write that 

V = {a, b, c, d, e} 

E = {ab, ac, bd, cd, de} 

Adjacency relation: Node B is adjacent to A if there is an 

edge from A to B. 

Paths and reachability: A path from A to B is a sequence 

of vertices A1… A such that there is an edge from A to 
A1, from A1 to A2… from An to B. Vertex B is said to be 

reachable from A if there is a path from A to B. 

 

B. Graph Operations 

The basic primary operations provided by a graph data 

structure are as follows: 

 Addition of a vertex: adding a vertex to a graph when 

needed. 

 Removal of a vertex: removing an existing vertex from 

the graph. 

 Get vertex value: returns the value linked with a 
particular vertex. 

 Set vertex value: assigns the value for a particular 

vertex. 

 Addition of an edge: adding an edge between two 

vertices of a graph. 

 Removal of an edge: removing an edge that exists 

between two vertices as required. 

 Get edge value: returns the value linked with the edge 

joining any two vertices. 

 Set edge value: assigns the value to an edge connecting 

the given vertices. 

 Displaying a vertex: display required vertex of a graph. 

 Finding all the neighboring vertices Y such that there 

exists an edge from the vertex X to vertex Y. 

 Testing whether vertex X is adjacent to vertex Y which 

means confirming the existence of an edge from X to 

Y. 

 Counting the number of vertices and number of edges 

present in the given graph. 

 

C. Types of Graphs 

1) Directed Graph: A directed graph is a graph where all 
the edges are directed from one vertex to another. The 

order of vertices in the pairs in the edge set matters in this 
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type of graph. Thus, a is adjacent to b only if the edge set 

consists of a pair (a, b). In directed graph edges are drawn 

as arrows indicating the direction. A directed graph is 

sometimes called a digraph or a directed network. Directed 

graph can be cyclic or acyclic. Cycle is a path along the 

directed edges from a vertex to itself. Example of directed 

graph is shown in the Fig. 2. 
 

 
Fig. 2 Directed graph 

 

2) Undirected Graph: A directed graph is a graph where all 

the edges are bidirectional. The order of vertices in the 

pairs in the edge set doesn‟t matter in this type of graph. In 
undirected graph edges are drawn as straight lines. 

Example of undirected graph is shown in the Fig. 3. 
 

 
Fig. 3Undirected graph 

 

3) Weighted Graph: A weighted graph is a graph where 

each edge has an associated numerical value, called 

weight. Weighted graphs may be either directed or 

undirected. The weight of the edge is often referred to as 

the “cost” of the edge. Example of weighted graph is 

shown in the Fig. 4. 
 

 
Fig. 4 Weighted graph 

 

4) Space Graphs and Dense Graphs: Consider a graph 

having n nodes. A graph is said to be a sparse graph if it 

has less than n2 edges. For example, a graph with n nodes 

and n edges or even 2n edges is said to be sparse. 

Whereas, a graph with close to maximum number of edges 
is said to be dense. 

 

III. GRAPH REPRESENTATION 

 

Graph is a mathematical structure and finds its 

applications in various Computer fields. The graph 

problems should be represented in computer memory 

using suitable data structures. The choice of graph 

representation is said to be situation specific. It totally 

depends on the type of operations to be performed and 

ease of use. Simple way to represent a graph is using Edge 

List. 

 

A. Edge List: This structure simply maintains and stores 

the vertices and the edges into unsorted sequences. 

Advantage: Easy to implement and iterate over small 

edges. 

 
Disadvantage: Finding the edges incident on a given 

vertex is inefficient since it requires examining the entire 

edge sequence. That means –  

 

 Difficult to tell how many edges a vertex touches. 

 Difficult to tell if an edge exists say from A to B. 

Further, Adjacency list and Adjacency matrix are the two 

standard and widely used ways for the representation of a 

graph. 

 

B. Adjacency List: This list structure extends the edge list 
structure by adding incidence containers to each vertex. 

Here an array of linked lists is used. Array size will be 

equal to the number of vertices. Consider an array A[ ]. An 

entry A[i] represents the linked list of vertices adjacent to 

the ith vertex. In these, vertices are stored as objects. Each 

vertex further contains a list of neighboring vertices. This 

type of representation allows additional data of the 

vertices to be stored. But these additional data is stored 

only if edges are stored as objects that mean every vertex 

store its incident edges and edge stores its incident 

vertices. 
Another representation could be maintaining two lists. 

First list stores indices corresponding to each vertex in the 

graph and each of these refer to the second list storing the 

index of each adjacent vertex to this one. It would be good 

if we associate weight of each edge with the adjacent 

vertex in this list. These lists of all the vertices in the graph 

would be useful if stored in a hash table. 

It is also used to represent a weighted graph. The nodes of 

linked lists will be storing weights of edges. Each node has 

precisely as many nodes in its adjacency list as it has 

neighbors. Therefore, an adjacency list is a very space 

efficient representation of a graph. You would not store 
more information than actually required. 

If a graph has V vertices and E edges then a graph 

represented using adjacency list will need – 

• V+E node instances for a directed graph 

• V+2E node instances for an undirected graph 

This is generally recommended if it efficiently represent 

sparse graphs. 

 

Advantages of using adjacency list are as follows: 

 Addition of a vertex and connecting new vertices with 

the existing ones is easier. 

 Has a space complexity of O(|V|+|E|). 

 It allows us to store graph in more compact form and to 

get the list of adjacent vertices in O(1) time which is a 

big benefit for some algorithms. 
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Disadvantages of using adjacency list are as follows: 

 Queries like whether there is an edge from vertex u to 

vertex v are not efficient and require time complexity, 

O(V). 

 It does not allow us to make an efficient 

implementation, if dynamic change of vertices number 

is required. 

Example of adjacency list representation is as shown in 

Fig. 5. 

 

 
Fig5 Adjacency List Representation of a given graph 

 

C. Adjacency Matrix: The adjacency matrix structure 

augments the edge list structure with a matrix where each 

row and column corresponds to a vertex. It is a two 

dimensional matrix form where the rows represent source 

vertices and columns represent destination vertices. Data 

on edges and vertices is stored externally. Between each 

pair of vertices, cost of one edge is to be stored. This 

shows which vertices are adjacent to one another. We 

know that two vertices are said to be adjacent if there is an 

edge connecting them. For a graph of n vertices, the 
dimensions of adjacency matrix will be n*n. 
 

In case of directed graph, suppose if vertex j is adjacent to 
vertex i then there will be an edge from i to j and vice-

versa. For a given vertex i, its adjacent vertices will be 

determined by looking at the row entry (i, [1…n]) of the 

matrix. If the value is true then it indicates that there exists 

an edge from i to j and false indicates no edge exists. 
 

In case of undirected graph, the matrix values will be 

populated with Boolean values. The values of (i, j) and (j, 

i) are equal which means adjacency matrix for undirected 

graph is always symmetric along the diagonal. 
 

In weighted graph, the Boolean values will be the costs of 

the edges connecting two vertices of a graph. Generally 

adjacency matrix is used to represent weighted graphs. If 

adj[i][j] = w , then we will say that there is an edge from 

vertex i to vertex j with weight w (can be any positive 
number). There are some cases where zero can also be the 

possible weight of the edge, then we have to store some 

sentinel value for non-existent edge, which can be a 

negative value; since the weight of the edge is always a 

positive number. 
 

An adjacency matrix requires an n2 element array so for 

parse graphs much of the matrix will be empty. Also, for 

undirected graphs half of the graph is repeated 

information. Hence these matrices are said to be space 

inefficient. 
 

The memory use of an adjacency matrix is O(n2) where n 

= number of vertices. 

Advantages of using adjacency matrix are as follows: 

 Easy to understand, implement and convenient to work 

with. 

 Removing an edge involves time complexity of O(1). 

 Queries like whether there is an edge from vertex „u‟ to 

vertex „v‟ are efficient and require time complexity, 

O(1). 

 

Disadvantages of using adjacency matrix are as follows: 

 Space complexity is of the O(V2) where V = number of 
vertices. 

 Sparse matrix has less number of edges but the space 

complexity is still the same. 

 Adding an edge involves time complexity of O(V2). 

 If the number of nodes in the graph may change, matrix 

representation is too inflexible (especially if we don‟t 

know the maximal size of the graph). 

 

This is preferred if the graph is of dense type where |E| ~ 

V2.  

Example of adjacency matrix representation is as shown in 
Fig. 6. 

 

 
Fig. 6. Adjacency Matrix Representation of a given Graph 

 

We can say that Although the linked list representation 

requires very less memory as compared to the adjacency 
matrix, the simplicity of adjacency matrix makes it 

preferable when graph are reasonably small. 

 

Adjacency information in an array can be viewed as a 

function.  
 

1)  Merits of representing graphs as functions are as 
follows: 

 Simple and easy to understand. 

 Easily adaptable to different types of graphs. 

2) Demerits of representing graphs as functions are as 

follows: 

 Graph must be known statistically at compile time. 

 Cannot be extended to accommodate queries about the 

set of Vertices or the set of Edges. 

 

One way to overcome the cons of using functions to 

represent graph is to use arrays instead. 
 

1) Merits of representing graphs as arrays are as follows: 

 Simple and easy to understand and easily adaptable to 

different types of graphs. 

 Can be accessed efficiently and constructed at run-
time. 

2) Demerits of representing graphs as arrays are as 

follows: 
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 The domain of Vertices must be a type that can be used 

as an index into an array. 

 Requires that graph access be a Command rather than a 

computation 

 

IV. GRAPH TRAVERSAL TECHNIQUES 

 

Graph traversal means visiting all the nodes of the graph. 

A structured system is required by many application of 

graph to examine the vertices and edges of a graph. There 

are two graph traversal methods as follows: 
1. Breadth First Search (BFS) 

2. Depth First Search (DFS) 

 

Breadth First Search: 

Given an input graph G = (V, E) and a source vertex S, 

from where the searching starts. We mark the vertex S as 

visited and then visit all of its adjacent nodes. Now one of 

the adjacent node is selected for exploration. The 

procedure is repeated until all the nodes are visited. Thus, 

BFS systematically traverse the edges of G to explore 

every vertex that is reachable from S. A queue is used to 
keep a track of the progress of traversing the neighbour 

nodes. Implementation of BFS is as shown in the Fig. 7. 

 

 
Fig.7 Implementation of BFS 

 

Algorithm: 

1. Input the vertices of the graph and its edges G = (V, E) 

2. Input the source vertex and assign it to the variable S. 

3. Add or push the source vertex to the queue. 

4. Repeat the steps 5 and 6 until the queue is empty (i.e., 

front > rear) 
5. Pop the front element of the queue and mark it as 

visited. 

6. Push the vertices, which is neighbor to just popped 

element, if it is not in the queue and is not visited. 

 

Depth First Search: 

Given an input graph G = (V, E) and a source vertex S, 

from where the searching starts. We mark the vertex S as 

visited and then visit one of its adjacent nodes. We will 

mark this adjacent node as visited. The procedure is 

repeated until all the vertices of the graph are visited 

recursively. A stack is used in the implementation of DFS. 

Implementation of DFS is as shown in the Fig. 8. 

 

 
Fig. 8 Implementation of DFS 

 

Algorithm: 

1. Input the vertices and edges of the graph G = (V, E). 

2. Input the source vertex and assign it to the variable S. 

3. Push the source vertex to the stack. 

4. Repeat the steps 5 and 6 until the stack is empty. 

5. Pop the top element of the stack and mark it is visited. 

6. Push the vertices which is neighbour to just popped 

element, if it is not in the stack and is not visited. 

7. Exit. 

 

V. APPLICATIONS OF GRAPHS 
 

 In road networks, we can consider the intersections as 

vertices and the road segments between them as the 

edges. Many map programs such as Google maps, Bing 

maps and Apple IOS 6 maps makes use of such 

networks to find the best routes between locations. 

They are used for studying traffic patterns, traffic light 

timings and many aspects of transportation. 

 Directed graph can be used to map the links between 

pages within a website. In this case each web page is a 

vertex and each hyperlink is a directed edge. These 
graphs are also used to analyse ease of navigation 

between different parts of the site. 

 In case of power grid and water network, vertices 

represent connection points and edges represent the 

wires or pipes between them. Graphs can be used to 

minimize the cost to build this infrastructure that 

matches the required demands. 

 Scene graphs represent the logical or spatial 

relationships between objects in a scene. Scene graphs 

are widely used in graphics and computer games 

industry. 

 Graph theory is also widely used in sociology as a way, 

for example, to measure actors' prestige or to explore 

rumour spreading, notably through the use of social 

network analysis software. 
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 A common problem in AI is to find some goal that 

satisfies a list of constraints. For example, for a 

University to set its course schedules, it needs to make 

sure that certain courses don't conflict, that a professor 

isn't teaching two courses at the same time, that the 

lectures occur during certain timeslots, and so on. 

Constraint satisfaction problems like this are often 

modelled and solved using graphs. 

 

VI.  CONCLUSION 

 
Graphs are a commonly used data structure because they 

can be used to model many real-world problems. The 

graph makes large data quite simpler to work with. Graphs 

are a very effective visual tool because they have the 

capacity to present the information quickly as well as 

easily. Graphs have the ability to reveal a trend or 

comparison. That is the main reason why the graphs are 

commonly used by different media and also in business. 

Thus various representations of a graph, advantages and 

disadvantages and their applications have been studied. 
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